

1 | P a g e

B.Sc. (Honours and
Honours with Research), 4
- Years degree program in
Computer Science under
credit framework (CCF).

(2024)
Semester – I, II, III & IV

University
of

Calcutta

2 | P a g e

Curriculum Structure for a 4-Year Bachelor of Science or Bachelor of Arts (Honours or
Honours with Research) Degree under CCF as per CSR-05/2023

Reference: CSR-05/2023

3 | P a g e

Curriculum Structure for a 4-Year Bachelor of Science (Honours or Honours with
Research) Degree in Computer Science under CCF (Major discipline).

Semester Core Subjects - (DSCC) Computer Science as Major Discipline SEC
Theory Paper

Credits – 03 (75 marks)
Practical paper

Credits – 01 (25 marks)
Theory – 02 Credits
Practical – 02 credits

1 Computer fundamentals & Digital
Logic

Digital Logic Circuit Lab

Data Visualization using
spreadsheets

2 Problem Solving Using C Problem Solving using C Lab Web Development

3

Data Structures Data Structures using C
Mobile App Development Computer Architecture &

Organization.
Digital Computer Design Lab

4

Computational Mathematics

Numerical Methods lab

Not applicable
Microprocessor and Its Applications

Programming Microprocessor 8085

Operating System

Shell Programming

Object Oriented Programming Programming in Java

5

Design & Analysis of Algorithms

Graph algorithms Lab using C++

Not applicable
Data Communication and
Networking

Networking Lab

Theory of Computation Tutorial
Database Management System
(DBMS)

RDBMS Lab

6

Software Engineering

Tutorial

Not applicable Programming in Python Programming in Python

Linear Algebra & Statistical Methods

Linear Algebra & Statistical
Methods using Python

7

Compiler Design Tutorial

Not applicable
Machine Learning Machine learning Lab using Python

Computer Graphics Computer Graphics
Embedded Systems Embedded Lab
Big Data Analytics / Research Project Big Data Analytics Lab

8

Digital Image Processing

Digital Image Processing using
Python and Open CV.

Not applicable Cryptography Cryptography using Python
Data Warehousing Data Warehousing Lab
Mobile & Wireless
Computing/ResearchProject

Mobile & Wireless Computing lab

Cloud Computing / ResearchProject Cloud Computing Lab

Note:For Semesters 7 and 8, the courses highlighted in yellow will be taken by students who either choose not
to pursue Honours with Research or do not meet the eligibility criteria for Honours with Research. Please refer
to notification number CSR-05/2023 for more details.

4 | P a g e

Curriculum Structure for Computer Science as a Minor subject/discipline of study for
students opting for a different major discipline in a 4-Year Bachelor of Science
(Honours or Honours with Research) Degree.

Semester Computer Science as Minor (M1)
study/discipline

Computer Science as Minor (M2)
study/discipline

Theory Paper
Credits – 03 (75

marks)

Practical paper
Credits – 01 (25 marks)

Theory Paper
Credits – 03 (75

marks)

Practical paper
Credits – 01 (25 marks)

1 Computer fundamentals
& Digital Logic

Digital Logic Circuit Lab

Not applicable

Not applicable 2 Problem Solving Using
C

Problem Solving using C
Lab

3

Not applicable Not applicable Computer
fundamentals & Digital
Logic

Digital Logic Circuit Lab

4 Not applicable Not applicable Problem Solving Using
C

Problem Solving using C
Lab

5 Data Structures Data Structures using C Data Structures Data Structures using C

6 Operating System

Shell Programming Operating System

Shell Programming

Credits 4 x 4 = 16 4 x 4 = 16
Full marks Marks 4 x 100 = 400 (Minor – M1) Marks 4 x 100 = 400 (Minor – M2)

5 | P a g e

Curriculum Structure for a 3-Years Bachelor of Science in Multidisciplinary Course
(MDC) in Computer Science

6 | P a g e

Curriculum Structure for a 3-Years Bachelor of Science in Multidisciplinary Course
(MDC) and Computer Science as one of the subjects.

Semester If taken as CC1 If taken as CC2 If taken as Minor SEC IDC
1 Computer

fundamentals & Digital
Logic,
(Th-3/P-1)*

Computer
fundamentals &
Digital Logic,
(Th-3/P-1)

Not Applicable

Web
Development
(Th-2/P-2)

Fundamentals
of Computer
Science and
their
Applications.
(Th-2/P-1)

2 Problem Solving Using
C
(Th-3/P-1)

Problem Solving Using
C
(Th-3/P-1)

Not Applicable

3

Data Structures
(Th-3/P-1)

Data Structures
(Th-3/P-1)

Computer
fundamentals &
Digital Logic,
(Th-3/P-1)

4

Operating System
(Th-3/P-1)

Operating System
(Th-3/P-1)

Problem Solving
Using C
(Th-3/P-1)

Not
Applicable

Not
Applicable

Object Oriented
Programming
(Th-3/P-1)

Object Oriented
Programming
(Th-3/P-1)

5

Database Management
System (DBMS)
(Th-3/P-1)

Database Management
System
(Th-3/P-1)

Data Structures
(Th-3/P-1)

Data Communication
and Networking
(Th-3/P-1)

Operating System
(Th-3/P-1)

6

Programming in
Python
(Th-3/P-1)

Data Communication
and Networking
(Th-3/P-1)

Object Oriented
Programming
(Th-3/P-1)

Programming in
Python
(Th-3/P-1)

Database
Management
System (DBMS)
(Th-3/P-1)

Credit Theory + Practical = 4
x 8

Theory + Practical = 4
x 8 = 32

Theory + Practical
= 4 x 6 = 24

Theory +
Practical = 4
x 3 = 12

Theory +
Practical = 3
x 3 = 9

Marks 8 x 100 = 800 8 x 100 = 800 6 x 100 = 600 3 x 100 = 300 3 x 75 = 225

• (Th – Theory, P – Practical), Theory -01 credit = 1 contact hour/week, Practical -01
credit = 2 contact hour/week

• 1 Credit = 25 marks.
• Syllabus remains the same as prescribed semester-wise in 4 Year B.Sc (Honours or

Honours with Research) in Computer Science.

7 | P a g e

Computer and other hardware recommended for laboratory (Upgrade/New
installation)

1. Minimum System requirement

Computer Hardware upgradation recommended

• Processor: Ryzen-3 (3200) series or Ryzen-5 (4600G/5600G) series with
compatible motherboard.
Or

• Processor: Intel i-3 10th generation and above, i5 12th generation and above
with compatible mother board with integrated graphics.

• Memory: DDR-4/5 (3200), 8 GB (minimum recommended) or more
• Operating System:Window-10/11 (64 - bit), or Linux (Ubuntu latest version).
• Open Office
• Upgrade hard disk to SSD.

2. Hardware laboratory

Digital Circuit and Microprocessor 8085 lab

• +5V dc Regulated power supply
• Digital multimeter
• Integrated Circuits – 7400, 7402, 7404, 7408, 7410, 7411, 7420, 7432, 7442, 7447,

7446, 7474, 7476, 7483/74283, 7486, 7489/74189, 7490, 74112, 74138, 74147, 74151,
74153, 74157, 74194, 74244, 74373.

• LED, Jumper wires, Cutters.
• Resistors: 100 Ω, 220Ω, 330Ω, 470Ω, 560Ω, 1KΩ, 1.5KΩ, 2.2KΩ, 4.7KΩ, 10KΩ,

15KΩ, 22kΩ, 100KΩ.
• Semiconductor devices: 1N4007.
• Microprocessor 8085 Trainer Kit (Dynalog/NVIS/ALS).

8 | P a g e

Syllabus for 4-Year Bachelor of Science (Honours or Honours with Research) degree in
Computer Science under CCF (Major discipline)/Minor and 3-year MDC course
(wherever applicable) for Semesters I, II, III and IV.

Semester - I
Paper Paper type Paper name Credit Contact hours

DSC/CC-1

Theory Computer fundamentals and Digital
Logic

3 45

Practical Computer fundamentals and Digital
Logic lab

1 30

SEC – 1

Theory Data visualization using
spreadsheet

2 30

Practical Data visualization using
spreadsheet Lab

2 45

Semester - II
Paper Paper type Paper name Credit Contact hours

DSC/CC-2

Theory Problem Solving using C 3 45
Practical Problem Solving using C Lab 1 30

SEC – 2

Theory Web Development 2 30
Practical Web Development Lab 2 45

Semester - III
Paper Paper type Paper name Credit Contact hours
DSC/CC-3 Theory Data Structure 3 45

Practical Data Structure Lab 1 30
DSC/CC-4 Theory

Computer Architecture &
Organization

3 45

Practical Computer Architecture &
Organization lab

1 30

SEC – 3

Theory Mobile App Development 2 30
Practical Mobile App Development lab 2 45

Semester - IV
Paper Paper type Paper name Credit Contact hours

DSC/CC-5

Theory Computational Mathematics 3 45
Practical Computational Mathematics lab

using C Lab
1 30

DSC/CC-6

Theory Microprocessor and its Applications 3 45
Practical Microprocessor – 8085 Lab 1 30

DSC/CC-7

Theory Operating System 3 45
Practical Operating System Lab 1 30

DSC/CC-8

Theory Object Oriented Programming 3 45
Practical Object Oriented Programming lab 1 30

9 | P a g e

Semester - I
Paper Paper type Paper name Credit Contact hours

DSC/CC-1

Theory Computer fundamentals and Digital Logic 3 45
Practical Computer fundamentals and Digital Logic

lab
1 30

SEC – 1

Theory Data visualization using spreadsheet 2 30
Practical Data visualization using spreadsheet Lab 2 45

CMSM- Theory: Computer Fundamentals and Digital Logic
DSC/CC-1/ -Core Course, Theory, Semester – 1, Credits - 03, Contact hours - 45.

Course description:

The course introduces the fundamental principles and concepts of digital logic, which form the
foundation of digital systems and computer architecture. Students will learn about Boolean algebra,
logic gates, combinational and sequential circuits, and the design and analysis of digital systems.

Course Objectives:

By the end of the course, students should be able to:

1. Understanding of Computer fundamentals, generations, classification of computers and brief
understanding of languages used.

2. Understand the principles and terminology of digital logic.
3. Analyze and simplify Boolean expressions using Boolean algebra.
4. Design and implement combinational logic circuits using logic gates.
5. Design and analyze sequential logic circuits, including flip-flops and registers.
6. Apply digital logic concepts to solve practical problems.
7. Utilizing discrete logic gates and integrated circuits on breadboards for the design of digital

circuits to enhance hands-on experience and practical understanding.

Computer Fundamentals
Central Processing Unit (CPU), Primary memory and Secondary Storage devices, I/O
devices, generation and classification of Computers: Super, Mainframe, Mini and
Personal Computer, System and Application Software, basic concepts on machine,
assembly and high-level language.

2 hours

Number Systems
Weighted and Non - Weighted Codes, Positional, Binary, Octal, Hexadecimal, Binary
Coded Decimal (BCD), Gray Codes, Alphanumeric codes, ASCII, EBCDIC, Conversion
of bases, signed arithmetic, 1's, 2's complement representation, Parity bits.
Single bit error detection and correcting codes: Hamming Code.
Fixed- and floating-point Arithmetic.

3 hours

Boolean Algebra
Fundamentals of Boolean Expression: Definition of Switching Algebra, Basic
properties of Switching Algebra, Huntington's Postulates, Basic logic gates (AND, OR,

10 | P a g e

NOT), De-Morgan's Theorem, Universal Logic gates (NAND & NOR), XOR and others,
Minterm, Maxterm, Minimization of Boolean Functions using Karnaugh-Map up to four
(4) variables, two level and multilevel implementation using logic gates, simplification of
logic expressions.

4 hours

Combinational Circuits
Adder & Subtractor
Half adders (2-bit), half Subtractor (2-bit), Full Adder (3-bit), Full Subtractor (3-bit)
realization using logic gates, Carry Look Ahead adders, BCD adder, 1’s and 2’s
complement adders/subtractor unit using 4-bit parallel adders.

5 hours

Data Selector/Multiplexer
Realization of multiplexers (4 to 1 and 8 to 1) using logical gates, expansion (Cascading),
realization of AND, OR and NOT using multiplexers, realization of different Boolean
expressions (SOP) using multiplexers.

5 hours

Data Distributor
De-multiplexer, Cascading, realization of various functions.

2 hours

Encoders
Realization of simple and priority encoders using basic and universal logic gates.

2 hours

Chip Selector/Minterm Generator
Realization of decoders using logic gates, function realization, BCD Decoders, Seven
Segment display and decoders, cascading.

3 hours

Parity bit, Code Converters and magnitude comparators
Parity bit generator/checker, Gray to binary code, binary to Gray code and Gray to
Excess-3 code converter, 2 & 3 bit magnitude comparators.

2 hours

Sequential Circuits
Latch& Flip-Flops
Basic Set/Reset (SR) Latch using NAND and NOR gates, Gated S-R latches, Gated D
Latch, Gated J-K Latch, race around condition, Master-Slave J-K flip flop, negative and
positive clock edge detector circuits, edge triggered SR, D, JK, and T flip flop, flip-flop
Conversions.

5 hours

Registers
Serial Input Serial Output (SISO), Serial Input Parallel Output (SIPO), Parallel input
Serial Output (PISO), Parallel Input Parallel Output (PIPO), Universal Shift Registers.

3 hours

Counters
Asynchronous Counter
UP/DOWN Counters, Mod - N Counters, BCD Counter (Counter Construction using J-K
and T Flip Flops).

4 hours

Synchronous Counter
UP/DOWN Counters, Mod-N Counters, Ring & Johnson Counters.

3 hours

Integrated Circuits (Qualitative Study): DTL, TTL: Concepts of Fan in & out, TTL
NOT, TTL NAND & NOR, NMOS, PMOS, CMOS, IC fabrication (Concepts only):
SSI, MSI, LSI, VLSI, ULSI.

2 hours

11 | P a g e

Core Course/DSE, CMSMDSCC-1- Practical: Computer Fundamentals and Digital
Logic Lab,
Semester – 1, Credits - 01, Contact hours - 30.

Combinational Circuits

1. Study and prove De-Morgan’s Theorem.
2. Realization of Universal functions using NAND and NOR gates.
3. Implementation different functions (SOP, POS) using digital logic gates.
4. Implementation of half (2-bit) and full adder (3-bit) using basic (AND, OR and NOT) and

Universal logic gates (NAND & NOR).
5. Design 4 to 1 multiplexer using basic or Universal logic gates and implement half and full

adder/subtractor.
6. Design and implement half and full adder/subtractor and other functions using multiplexers

74151/74153 and other necessary logic gates.
7. Cascading of Multiplexers.
8. Design 2 to 4 decoder using basic or universal logic gates, study 74138 or 74139 and

implement half and full Adder/Subtractor and other functions.
9. Design a display unit using Common anode or cathode seven segment display and decoders

(7446/7447/7448)
10. Design and implement 4-input 3-output (one output as valid input indicator) priority encoder

using basic (AND, OR & NOT) logic gates.
11. Design a parity generator and checker using basic logic gates.

Sequential Circuits

1. Realization of SR, D, JK Clocked/Gated, Level Triggered flip-flop using logic gates.
2. Master Slave flip-flop using discrete digital logic gates.
3. Conversion of flip-flops: D to JK, JK to D, JK to T, SR to JK, SR to D Flip-flop.
4. Design asynchronous counters MOD-n (upto 4 bits) UP/ DOWN.
5. Construction Synchronous UP/Down Counter (maximum 4 bits).

Note:The assignments listed below are illustrative examples and not an exhaustive list. They serve as
a starting point to cover various aspects of the course.

Recommended Books

1. Digital Fundamentals, 11th Edition by Pearson Eleventh Edition, Thomas L. Floyd.
2. Digital Logic and Computer Design, M Morris Mano, Pearson.
3. Digital Electronics, Principles, Devices and Applications, Anil K. Maini, John Wiley & sons.
4. Digital Principles and Applications, Leach, Malvino, Saha, Tata McGraw Hill Education.
5. Digital Systems, Principal and Applications, Widmer, Moss and Tocci, Pearson.
6. Digital Circuits, Volume I & II, Ray Chaudhuri, Platinum Publishers.
7. Digital Circuits and Design, Salivahanan and Arivazhagan, 5th Edition, Oxford Higher

Education publishers.

12 | P a g e

CMSM- Theory: Data visualization using spreadsheet
SEC-1, Theory, Semester – 1, Credits - 02, Contact hours - 30.

Course Description

This Skill Enhancement Course (SEC) provides a comprehensive introduction to essential concepts
and practical skills required for proficient utilization of spreadsheets. Students will gain proficiency in
data management, visualization, analysis, and presentation using a widely-used open-source
spreadsheet software application such as OpenOffice, LibreOffice, or Google Spreadsheets. Through
this course, students will acquire the ability to proficiently create, format, manipulate, and analyze
data within spreadsheets to meet a diverse range of needs.

Course Objectives

1. The purpose and potential applications of spreadsheets.
2. Create, format, and modify spreadsheets.
3. Use of formulas, functions, and calculations to perform data visualization.
4. Understanding and utilization of advanced spreadsheet features such as data validation,

conditional formatting, and pivot tables.
5. Design visually appealing charts and graphs to represent data.
6. Collaborate and share spreadsheets with others.
7. Apply spreadsheet skills to real-world scenarios and problem-solving.
8. Role of spreadsheets in data analysis.
9. Import, clean, and transform data for analysis.
10. Applicability of statistical and mathematical functions for data visualization.
11. Advanced features and tools for data visualization.
12. Perform exploratory data analysis and identify patterns and trends.
13. Create informative reports and summaries based on data analysis.
14. Apply data analysis techniques to real-world problems.

Description Teaching
hours

Introduction to Spreadsheets
Spreadsheets and their applications, overview of spreadsheet software (e.g., Open
office, Google Sheets, Excel), creating workbooks, modifying workbook, modifying
workbook, zooming in on a worksheet, arranging multiple workbook windows, adding
buttons to the quick access toolbar, customizing the ribbon, maximizing usable space
in the program windownavigating the spreadsheet interface, entering and editing data
in cells saving, opening, and closing spreadsheet files.

1 hours

Working with Data and Tables
Entering and revising data, moving data within a workbook, finding and replacing
data, correcting and expanding upon worksheet data, defining tables.

2 hours

Performing Calculations on Data
Naming groups of data, creating formulas to calculate values(e.g., SUM, AVERAGE,
COUNT), summarizing data that meets specific conditions (e.g., AVERAGEIF,
COUNTA, COUNTBLANK, COUNTIFS, SUMIF, IFERRORetc), finding and
correcting errors in calculations.

2 hours

13 | P a g e

Changing Workbook Appearance
Formatting Cells, defining styles, workbook themes and table styles, making numbers
easier to read, changing the appearance of data based on its value, adding images to
worksheets.

2 hours

Data Analysis and Manipulation
Limiting data appearance on screen, working with text functions for data cleaning,
Splitting and combining data, Data normalization and standardization, working with
ranges and named ranges, conditional formatting, data validation and error checking,
using logical functions (e.g., IF, AND, OR), sorting and filtering data.

3 hours

Advanced Spreadsheet Features
Creating and managing tables, creating and modifying pivot tables, using lookup
functions (e.g., VLOOKUP, HLOOKUP), working with charts and graphs, importing
and exporting data.

3 hours

Statistical Functions and Analysis: Descriptive statistics (mean, median, mode,
variance, etc.), Calculating measures of central tendency and dispersion, Correlation
and regression analysis, Hypothesis testing and confidence intervals, Analysis of
variance (ANOVA).

3 hours

Pivot Tables and Data Aggregation
Creating pivot tables for data summarization, grouping and aggregating data by
categories, applying filters and slicers to pivot tables, calculating calculated fields and
items.

2 hours

Advanced Data Visualization
Creating charts and graphs for data representation, customizing chart elements (titles,
axes, legends), Using sparklines and data bars for visual analysis, creating interactive
dashboards, incorporating trendlines and forecasting in charts.

2 hours

Exploratory Data Analysis
Identifying patterns and outliers in data, creating histograms and box plots, using
conditional formatting for data visualization, Data segmentation and drill-down
analysis, Applying data validation rules for data integrity.

3 hours

Advanced Analysis Techniques
Using goal seek and solver for optimization problems, performing "what-if" analysis
with data tables, simulating data using random number functions, Monte Carlo
simulation for risk analysis, creating scenario analysis models.

2 hours

Reporting and Presentation of Results
Designing informative reports and summaries, creating interactive dashboards for data
presentation, data visualization best practices, documenting data analysis processes
presenting findings to stakeholders.

3 hours

Collaboration and Sharing
Protecting worksheets and workbooks, sharing spreadsheets with others, tracking
changes and commenting, collaborating in real-time, using version history and revision
control.

2 hours

14 | P a g e

CMSM- Practical - Data visualization using spreadsheet
SEC-1, Laboratory, Semester – 1, Credits - 02, Contact hours - 45.

1. Create a personal budget spreadsheet that tracks income, expenses, and savings over a
specified period. Use formulas and functions to calculate totals, percentages, and remaining
balances.

2. A dataset containing sales data for a company to be provided. A spreadsheet to be created that
calculates monthly sales totals, identifies top-selling products, and visualizes sales trends
using line charts or bar graphs. Use conditional formatting to highlight exceptional sales
performances.

3. Design a grade book spreadsheet that calculates students' final grades based on assignments,
exams, and participation. Incorporate weighted grading systems, formulas for calculating
averages, and conditional formatting to indicate performance levels. Generate reports to track
individual student progress.

4. Create a spreadsheet that tracks inventory for a hypothetical business. Include columns for
item names, quantities, prices, and total values. Use formulas to automatically update
inventory totals, generate alerts for low stock, and create visualizations to represent inventory
levels over time.

5. Loan parameters, such as principal amount, interest rate, and loan term to be provided. Create
a spreadsheet that calculates monthly loan payments, remaining balances, and interest paid
over time using appropriate formulas. Create a chart to visualize the loan's repayment
schedule.

6. Dataset to be provided which will allow various data analysis tasks using spreadsheets.
Calculation of summary statistics, sorting and filtering data, creating pivot tables for deeper
insights, and generation of charts or graphs to visualize patterns or trends within the data.

7. A dataset to be selected (e.g., stock prices, weather data, population growth, etc) and create
line charts or area charts to visualize trends over time. Students should choose appropriate
chart types, label axes, and add titles and legends to make the visualization clear and
informative.

8. A dataset containing information about different products or variables (e.g., sales data,
customer satisfaction ratings) to be provided and following to be done; create bar charts or
column charts to compare the performance or rankings of the items. Use color, data labels,
and chart elements to enhance the visual comparison.

9. A dataset containing time-series data for multiple variables (e.g., monthly sales data for
different products) to be provided and the following task to be performed;to create a combo
chart with lines and columns to compare the trends of the variables and identify any
relationships or patterns.

10. To create a unique visualization using advanced spreadsheet features and tools. For example,

an experiment with sparklines, radar charts, or treemaps to represent specific types of data or
explore innovative ways to visualize information.

15 | P a g e

Note:The assignments listed below are illustrative examples and not an exhaustive list. They serve as
a starting point to cover various aspects of the course.

Recommended Text books

1. Data Analysis and Decision Making with Microsoft Excel" by S. Christian Albright.
2. Microsoft Excel 2019Data Analysis andBusiness Modeling, Sixth Edition,Wayne L. Winston,

Pearson education.
3. Excel 2019 Bible, Michael Alexander, 11th edition, Wiley.
4. Microsoft Office 2019 for Dummies, Wallace Wang, Wiley.

Recommended Application Software

1. Google Spreadsheets
2. Libre/Open Office
3. Excel sptreadsheets

Semester - II
Paper Paper type Paper name Credit Contact hours

DSC/CC-2

Theory Problem Solving using C 3 45
Practical Problem Solving using C Lab 1 30

SEC – 2

Theory Web Development 2 30
Practical Web Development Lab 2 45

CMSM- Theory: Problem Solving using C
DSC/CC-2, Theory, Semester – 2, Credits - 03, Contact hours - 45.

Objective of the Course

The objectives of this course are to make the student understand programming language,
programming, concepts of Loops, reading a set of Data, stepwise refinement, Functions, Control
structure, Arrays. After completion of this course the student is expected to analyze the real life
problem and write a program in ‘C’ language to solve the problem. The main emphasis of the course
will be on problem solving aspect i.e. developing proper algorithms.

After completion of the course the student will be able to;

1. Develop efficient algorithms for solving a problem.
2. Use the various constructs of a programming language viz. conditional, iteration and

recursion.
3. Implement the algorithms in “C” language.
4. Use simple data structures like arrays, stacks and linked list in solving problems.
5. Handling File in “C”.

16 | P a g e

Outline of Course

S. No. Topic Minimum
number of hours

1 Introduction to Programming 03
2 Algorithm/ Flowchart for Problem Solving 06
3 Introduction to ‘C’ Language 02
4 Conditional Statements and Loops 05
5 Arrays 05
6 Functions 06
7 Storage Classes 02
8 Structures and Unions 05
9 Pointers 06

10 File Processing 03
11 Organizing C Projects 02

Lectures = 45
Practical/tutorials = 30, Total = 75

Detailed Syllabus

Description Teaching
hours

Introduction to Programming
The Basic Model of Computation, Algorithms, Flow-charts, Programming
Languages, Compiler, Interpreter, Assembler, Linker and Loader, Testing and
Debugging, Documentation.

03 hours

Algorithms/ Flowchart for Problem Solving
Exchanging values of two variables, summation of a set of numbers, decimal base to
binary base conversion, reversing digits of an integer, GCD (Greatest Common
Division) oftwo numbers, test whether a number is prime, organize numbers in
ascending order using bubble sort, find integer square root of a number, factorial
computation, Fibonacci sequence, evaluate ‘sin x’ as sum of a series, reverse order of
elements of an array, find largest number in an array, print elements of upper
triangular matrix, multiplication of two matrices, evaluate a Polynomial.

06 hours

Introduction to ‘C’ Language
Character set, variables, identifiers and their nomenclature, built-in data types,
variable declaration, arithmetic operators and expressions, constants and literals,
simple assignment statement, basic input/output statement, simple ‘C’ programs.

02 hours

Conditional Statements and Loops
Decision making within a program, conditions, relational operators, logical
connectives, if statement, if-else statement, Loops: while loop, do while, for loop,
nested structure, infinite loops, switch-case, break, continue statement, structured
programming.

05 hours

Arrays

17 | P a g e

One dimensional array: Array manipulation; Searching, Insertion, deletion of an
element from an array; finding the largest/smallest element in an array; two
dimensional arrays, addition/multiplication of two matrices, Transpose of a square
matrix; null terminated strings as array of characters, standard library string
functions.

05 hours

Functions
Top-down approach of problem solving, modular programming and functions,
standard library of C functions, Prototype of a function: Formal parameter list, return
type, function call, block structure, passing arguments to a function: call by reference,
call by value, Recursive functions, arrays as function arguments.

06 hours

Storage Classes
Scope and extent, Storage Classes in a single source file: auto, extern and static,
register, Storage Classes in multiple source files: extern and static

02 hours

Structures and Unions
Structure variables, initialization, structure assignment, nested structure, structures
and functions, structures and arrays: arrays of structures, structures containing arrays,
unions

05 hours

Pointers
Address operators, pointer type declaration, pointer assignment, pointer initialization,
pointer arithmetic, functions and pointers, Array of Pointers, pointer to an array,
pointers and structures, dynamic memory allocation.

06 hours

File Processing
Concept of Files, File opening in various modes and closing of a file, reading from a
file, writing onto a file, appending to a file.

03 hours

Organizing C projects, working with multiple source directories, makefiles. 02 hours

Recommended books main reading

1. Byron S Gottfried “Programming with C” Second edition, Tata McGraw Hill, 2007 (Paperback)
2. R.G. Dromey, “How to solve it by Computer”, Pearson Education, 2008.
3. Kanetkar Y, “Let us C”, BPB Publications, 2007.
4. Hanly J R & Koffman E.B, “Problem Solving and Program design in C”, Pearson Education,

2009.
5. Kashi Nath Dey and Samir Bandyopadhayay “C Programming Essentials” Pearson India

Education, 2010.
Supplementary reading.

1. E. Balagurusamy, “Programming with ANSI-C”, Fourth Edition,2008, Tata McGraw Hill.
2. Venugopal K. R and Prasad S. R, “Mastering ‘C’”, Third Edition, 2008, Tata McGraw Hill.
3. B.W. Kernighan & D. M. Ritchie, “The C Programming Language”, Second Edition, 2001,

Pearson education.
4. ISRD Group, “Programming and Problem-Solving Using C”, Tata McGraw Hill,2008.
5. Pradip Dey, Manas Ghosh, “Programming in C”, Oxford University Press, 2007.

18 | P a g e

CMSM- Practical: Problem Solving using C
DSC/CC-2, Practical, Semester – 2, Credits - 01, Contact hours - 30.

Algorithms / Flowchart (Sample and simple assignments)

1. Design a flowchart/ Algorithm for a basic calculator that accepts two numbers and an
operator (+, -, *, /) as input from the user and performs the corresponding operations, and
displaying/print the result.

2. Create a flowchart/Algorithm that converts a temperature from Celsius to Fahrenheit or vice
versa based on user input.

3. Design a flowchart/Algorithm that calculates the factorial of a given positive integer provided
by the user.

4. Create a flowchart/Algorithm that finds and displays the largest number among three input
numbers given by the user.

5. Design a flowchart/Algorithm to implement the linear search algorithm to find a specific
element in an array of integers. The array and the element to search for should be taken as
user input.

6. Create a flowchart/Algorithm that calculates the area and perimeter/circumference of different
shapes (e.g., circle, rectangle, triangle) based on user input for dimensions.

7. Design a flowchart/Algorithm that checks whether a given input string is a palindrome or not.

Introduction to ‘C’ Language (Assignments/examples related to simple C program.)

8. Write a program in C to read two numbers and produce the sum and product of those numbers
and show the result separately.

9. Write a program in C to read two numbers and print the greater number, if both the numbers
are same them print “EQUAL”.

10. Write a program in C multiple numbers say n and print the greatest and the third greatest.
11. Write a program in C to read n numbers and print the even/odd numbers up to n.
12. Write a program in C to read a number and print the sum of n natural numbers.
13. Write a program in C to read a number n and print factor of n.
14. Write a program in C to read a number n and print first 10 multiples of n.
15. Write a program in C to read a number n and print if n is “PRIME” or “COMPOSITE”.
16. Write a program in C to calculate the average of a set of N numbers.
17. Write a program in C convert the temperature given in Celsius to Fahrenheit or vice-versa.
18. Write a program in C to determine and print the sum of the following harmonic series for a

given value of n: 1+1/2+1/3+……..1/n.
19. Write a program in C that reads a floating-point number and then displays the right most

digits of integral part of the number.
20. Write a program in C to accept the length and breadth in meters and calculate the area and

perimeter and also determine if it is a rectangle or a square based on the inputs given.
21. Write a program in C to accept an input and determine if the input entered is a number or

alphabet or a special character.

19 | P a g e

22. Write a program in C to accept a word and then print the reverse case that is lower to upper
or upper to lower case.

23. Write an interactive program in C which will demonstrate the process of
division/multiplication, the user should be asked to enter two-digit numbers.

Conditional Statements and Loops (simple examples)

24. Write a program in C to read a number n and print n terms of the Fibonacci series.
25. Write a program in C to read a number n and print a single digit answer showing sum of the

digits of n. (example – input 8626, expected output – 4, explanation 8+6+2+6 = 22, 2+2 = 4).
26. Write a program in C to read a number n and print all the prime numbers up to n.
27. Write a program in C to read a number n and print the following pattern (input = 5, expected

output
1
12
123
1234
12345).

28. Write a program in C to check if the given number is the Armstrong number or not (e.g 153 =
13+53+33).

29. Write a program in C to check the type of the given triangle whether it is equilateral, isosceles
or scalene.

Arrays (examples of few simple programs)

30. Write a program in C to read a string and store it into a character array. Check whether the
string is a palindrome or not and display accordingly.

31. Write a program in C to read a list of numbers stored in an integer array and while saving
them arrange in ascending order.

32. Write a program in C to read two matrices and perform addition.
33. Write a program in C to read two matrix and check their compatibility for multiplication, if

compatible then find product and print it.
34. Write a program in C to read a string and print the triangular pattern using the string.

Functions

35. Write a program in C to print all the Armstrong number from 1 to 500.
36. Write a function convert () that returns a weight in Kg after being given a weight in pounds.
37. Write a function to find all perfect numbers from 1 to 100 (perfect numbers are positive

integers where the sum of perfect divisor is the number itself, e.g., 6 = 1+2+3).
38. Write a function power () to find base raise to power [basepower].

39. Write a program in C to find solution of a quadratic equation [𝑥𝑥 = −𝑏𝑏±√𝑏𝑏2−4𝑎𝑎𝑎𝑎
2𝑎𝑎

] where values
a, b and c to be accepted from the user as input.

40. Accept inputs from the user and echo it on to the screen in normal as well as in reverse using
void recursive function.

41. Accept any number from the user and calculate the factorial of the number using recursion

20 | P a g e

42. Accept numbers n and print the odd/even numbers up to n using recursive function.
43. Write a program in C in compute the cubes of all numbers from 10 to 20.
44. Write a program in C to find the GCD of a number.
45. Write a program in C to generate all combinations of 1, 2, 3, 4 using recursion, e.g.,1234,

2341….. etc.

Storage Classes

46. Write a program in C to accept a number and find the factorial of the number demonstrating
use of automatic variables.

47. Write a program in C to accept two numbers and find the sum of the number demonstrating
use of external variables.

48. Write a program in C to accept two numbers and find the sum of the number demonstrating
use of global variables.

49. Write a program in C to illustrate the use of static variables.
50. Write a program in C to accept numbers till a negative number is entered and calculate the

sum of a list of numbers read using static variable.
51. Write a program in C to sum integers and use static variable to store the cumulative sum.

Pointers
52. Write a program in C to swap two numbers of n length.
53. Write a program in C for swapping numbers using functions.
54. Write a program in C to illustrate the Call by Value and Call by reference a rule in C

programming.
55. Write a program in C to use a double dimensional array and print each cells value and

address.
56. Write a program in C to show the use of Array, declared at compilation time (static manner)

to read 10 numbers and display them.
57. Write a program in C to show the use of Array, declared dynamically to read 10 numbers and

display them.
58. Write a program in C to read a string in a dynamic array and determine whether it is

palindrome or not.
Structures and Unions

59. Write a program in C to read the data of a student, store it in a structure and display it.
60. Write a program in C to read the data of many students, store it in a structure and display the

student’s data and average percentage of the class.
61. Write a program in C to accept two dates from the user, validate both of them and check if

they are different dates.
62. Write a program in C to accept students’ data from the user. Check if the student stream is

science, commerce or arts. If the stream is arts, then print the class of students. If the stream is
science, then print the grade and if the stream is commerce, then print the percentage.

Files

63. Write a program in C showing the technique of opening and closing a file say result.dat and
writing a list of numbers and its square into the file.

21 | P a g e

64. Write some texts into a file, reopen the file in read mode and reproduce the text on the
monitor (use of putc() and fputc()).

65. Write a few numbers in the file created earlier. Reopen it in Read mode, write odd numbers in
one file and even number in another file (use the getw and putw functions).

66. Write programs to demonstrate the use of getc(), fgetc() and ungetc().
67. Write programs to demonstrate the use of String I/O, Formatted I/O and End of file eof() and

feof().

Recommended assignment content/structure

• Objective
• Algorithm/Flowchart
• Code
• Result
• Conclusion

Platform/Compiler

• GCC

Note: The assignments listed below are illustrative examples and not an exhaustive list. They
serve as a starting point to cover various aspects of the course.

CMSM- Theory: Web development
SEC-2, Theory, Semester – 2, Credits - 02, Contact hours - 30.

Course Description

This course provides an introduction to web development using HTML (Hypertext Markup
Language) and CSS (Cascading Style Sheets). Students will learn the core concepts and practical
skills needed to create and style web pages. The course covers the fundamentals of HTML structure,
CSS styling properties, and responsive web design principles.

Course Objectives

1. Understanding the basics of web development and the role of HTML and CSS.
2. Create well-structured HTML documents using proper tags and elements.
3. Apply CSS to style web pages, including layout, typography, colors, and images.
4. Implement responsive design techniques to ensure optimal display on different devices.
5. Incorporate multimedia elements, such as images, videos, and audio, into web pages.
6. Understand best practices for organizing and maintaining code in web development

projects.
7. Develop and deploy a basic website using HTML and CSS.

Description Teaching

hours
Introduction to Web development
Overview of web technologies and the role of HTML and CSS, understanding the

2 hours

22 | P a g e

structure of a web page, introduction to web browsers and developer tools.
HTML Fundamentals
Introduction to HTML tags and elements, creating headings, paragraphs, lists, and
links, working with images and multimedia content, creating forms for user input.

2 hours

CSS basics
Introduction to CSS and its role in web page styling, selectors, properties, and values,
applying inline, internal, and external style sheets, formatting text, backgrounds, and
borders.

2 hours

CSS Layout and box model
Understanding the box model and its impact on layout, working with margins,
padding, and borders, positioning elements using floats, positioning properties, and
flexbox, creating responsive layouts with media queries.

2 hours

Typography and colors
Styling text with fonts, sizes, weights, and styles, formatting text using CSS
properties, understanding color models and applying colors to elements.

3 hours

Images and multimedia
Working with images: sizing, aligning, and optimizing, incorporating videos and
audio into web pages, implementing responsive images and media.

3 hours

CSS Selectors and specificity
Understanding CSS selectors and specificity, applying styles to specific elements and
classes, using pseudo-classes and pseudo-elements.

3 hours

Responsive Web design
Introduction to responsive design principles, creating fluid layouts using CSS media
queries, adapting web pages for different screen sizes and devices.

3 hours

CSS Frameworks and libraries
Overview of popular CSS frameworks (e.g., Bootstrap, Foundation), using pre-built
CSS components and grids, customizing and integrating CSS frameworks into web
projects.

2 hours

Web development best practices
Organizing and structuring code files and directories, validating HTML and CSS
code, optimizing web pages for performance, introduction to version control with Git.

2 hours

Building and deploying a website
Planning and designing a basic website structure, Implementing HTML and CSS to
create the website, testing and debugging the website across different browsers,
deploying the website to a local host/web server.

6 hours

CMSM- Web development
SEC-2, Laboratory, Semester – 2, Credits - 02, Contact hours - 45.

1. Creating a personal portfolio website using HTML and CSS. There should be sections for an
about me, projects, skills, and contact information’s. Using CSS to style the layout,
typography, and colors to create a visually appealing and professional-looking portfolio.

2. To design a responsive website that adapts to different screen sizes. They should create a
layout that adjusts fluidly using CSS media queries and responsive design techniques.

23 | P a g e

3. To create a product landing page for a fictional product or an existing one. HTML to be used
to structure the page and CSS to style the layout, typography, buttons, and images. Main
focus to be on creating an engaging page that effectively showcases the chosen product.

4. To incorporate CSS animation effects into a web page. Use CSS transitions, transforms, and
keyframe animations to add interactive and engaging elements to the website. Create
animations for hover effects, scrolling effects, image sliders, or menu transitions.

5. Redesign an existing website using HTML and CSS. Analyze the original design and propose
improvements to the layout, typography, color scheme, and overall user experience.

6. Create a webpage layout using CSS Flexbox or CSS Grid. Design a responsive layout that
organizes content in a visually appealing way. Experiment can be performed with different
grid or flexbox properties to create flexible and responsive designs.

7. To design and style an interactive form using HTML and CSS. They should incorporate
various form elements such as text inputs, checkboxes, radio buttons, and select dropdowns.
Apply CSS styling to improve the form's visual appearance and user experience.

Note: The assignments listed below are illustrative examples and not an exhaustive list. They serve as
a starting point to cover various aspects of the course.

Suggested Readings.

1. Mastering HTML, CSS & Java Script Web Publishing, Laura Lemay, Rafe Colburn, Jennifer
Kyrnin, BPB Publication.

2. Web designing and development, Satish Jain, BPB Publications.
3. HTML & CSS: Thecompletereference, Thomas Powell, McGraw Hill education.
4. Web programming with HTML5, CSS and JavaScript, John Dean, Joneas and Bartlet

learning.
5. SamsTeachYourself HTML, CSS, and JavaScript AllinOne, Julie C Meloni, Pearson

Education.
6. Learning Web App development, Semmy Purewal, O’Reilly.

Semester - III
Paper Paper type Paper name Credit Contact hours

DSC/CC-3

Theory Data Structure 3 45
Practical Data Structure Lab 1 30

DSC/CC-4 Theory

Computer Architecture &
Organization

3 45

Practical Computer Architecture &
Organization lab

1 30

SEC – 3 Theory Mobile App Development 2 30
Practical Mobile App Development lab 2 45

CMSM - Theory: Data Structure

24 | P a g e

DSC/Core Course-3, Theory, Semester – 3, Credits - 03, Contact hours - 45.

Introduction to Data Structure
Abstract Data Type.

01 hour

Arrays
Multi-dimensional Arrays, Sparse Matrices. Polynomial representation

02 hours

Linked Lists
Introduction to Linked Lists:Definition and importance, Comparison with arrays,
applications of linked lists.
Types of Linked Lists: Singly, Circular and Doubly Lists, Polynomial
representation, Basic Operations: Creation of a singly connected linked list,
traversing a linked list, Insertion into a linked list, deletion from a linked list.

08 hours

Stacks
Array and linked representation of stack, Prefix, Infix and Postfix expressions, utility
and conversion of these expressions from one to another, evaluation of postfix and
prefix expression using stack, applications of stack, limitations of Array
representation of stack.

04 hours

Queues
Array and Linked representation of Queue, Circular Queue, De-queue, Priority
Queues.

04 hours

Recursion
Developing Recursive Definition of Simple Problems and their implementation;
Advantages and Limitations of Recursion; Understanding what goes behind
Recursion (Internal Stack Implementation), Tail recursion.

04 hours

Trees
Introduction to Tree as a data structure: Binary Trees (Recursive and Iterative
Traversals), Binary Search Tree (Traversal, Insertion, Deletion and Searching),
Threaded Binary Trees (Traversal and advantages).

12 hours

Searching and Sorting
Linear Search, Binary Search, Comparison of Linear and Binary Search with respect
to time complexity, Selection Sort, Bubble sort, Insertion Sort, Merge Sort, Quick
sort, Heap sort, Shell Sort, Radix sort, Comparison of Sorting Techniques with
respect to time complexity.

06 hours

Hashing
Introduction to Hashing, Different hashing Techniques, Collision and resolving
collision by Open Addressing, Closed Hashing, Separate Chaining, Choosing a Hash
Function.

04 hours

CMSM - Practical: Data Structure Lab
DSC/Core Course-3, Practical, Semester – 3, Credits - 01, Contact hours - 30.
Platform/Compiler: GCC

Lab based on Data Structure theory except Threaded Binary Tree, Shell Sort, Radix Sort and
hashing.

1. Write a program to search an element from a list. Give user the option to perform Linear or Binary
search.
2. Write a program to sort a list of elements. Give user the option to perform sorting using Insertion
sort, Bubble sort or Selection sort.
3. Implement Linked List. Include functions for insertion, deletion and search of a number, reverse the
list and concatenate two linked lists.

25 | P a g e

4. Implement Doubly Linked List. Include functions for insertion, deletion and search of a number,
reverse the list.
5. Implement Circular Linked List. Include functions for insertion, deletion and search of a number,
reverse the list.
6. Perform Stack operations using Linked List implementation.
7. Perform Stack operations using Array implementation.
8. Perform Queue operations using Array and linked list implementation.
9. Create and perform different operations on Double-ended Queues using Linked List
implementation.
10. Write a program to scan a polynomial using linked list and add two polynomials.
11. Write a program to create a Binary Search Tree and include following operations in tree:

(a) Insertion (Recursive and Iterative Implementation).
(b) Deletion.
(c) Search a node in BST.
(d) Display its preorder, postorder and inorder traversals recursively.
(e) Display its preorder, postorder and inorder traversals Iteratively.
(f) Display its level-by-level traversals.
(g) Count the non-leaf nodes and leaf nodes.
(h) Display height of tree.
(i) Create a mirror image of tree.

12. Write a program to reverse the order of the elements in the stack using additional stack.
13. Write a program to reverse the order of the elements in the stack using additional Queue.

Note: These are only sample programs; more can be included related to the theory.

Text/ Reference Books

1. Fundamentals of Data Structures in C, Horowitz, Sahni, Anderson-Freed, University Press.
2. Data Structures: A Pseudocode approach with C, Gilberg and Forouzan, Cengage Learning.
3. Data Structure using C, E Balagurusamy, McGraw Hill.
4. Data Structures Using C and C++, Aaron M. Tanenbaum, M J. Augenstein, Langsam, PHI.
5. Classic Data Structures, Debasis Samanta, Second Edition, EEE, PHI.
6. Data Structures, Seymour Lipschutz, Schaum's Outlines, Tata McGraw Hill.
7. Data Structures Through C (A practical approach), G.S Baluja, Dhanpat Rai & Co.

CMSM - Theory: Computer Architecture & Organization

DSC/Core Course-4, Theory, Semester – 3, Credits - 03, Contact hours - 45.

Basic Structure of Computers (Qualitative discussion)
Basic functional units, basic operational concept, bus structure, software, performance,
multiprocessor and multicomputer, IAS Computer, Historical Perspectives.

2 hours

Register Transfer and Micro-operation
Register transfer language, register transfer, bus and memory transfers, three state bus
buffers, memory transfer, arithmetic and logical micro-operations, shift and arithmetic
shifts.

4 hours

Basic Computer Organization and Design
Stored program organization, computer registers, common bus system, timing and
control, instruction cycle, fetch decode, Computer Instructions, register reference
instructions, memory reference instruction, input-output and Interrupt, design of basic

5 hours

26 | P a g e

computer, design of accumulator logic.
CPU Organization
Arithmetic and Logic Unit (ALU) - Combinational ALU, 2'S complement subtraction
unit, Booth’s algorithm for multiplication, restoration division algorithm and hardware.
General register organization, control word, accumulator based, register based, Stack
type CPU organization.

6 hours

Control Unit
Hardwired Control Unit (basic concept), Micro-programmed Control Unit: Control
memory, address sequencing, conditional branching, mapping of instructions,
subroutine.

6 hours

CPU Registers
Program Counter, Stack Pointer Register, Memory Address Register, Instruction
Register, Memory Buffer Register, Flag registers, Temporary Registers.

4 hours

Instructions.
Operational code, operands, zero, one, two and three address instruction, instruction
types, addressing modes, data transfer and manipulation instructions, Program control
instructions.

5 hours

CISC and RISC processors
Introduction, relative merits and De-merits.

1 hour

Computer Peripherals
VDU, Keyboard, Mouse, Printer, Scanner (Qualitative approach).

3 hours

Input / Output Organization: Polling, Interrupts, subroutines, memory mapped I/O,
I/O mapped IO, DMA, I/O bus and protocol, SCSI, PCI, USB, bus arbitration.

4 hours

Memory
Primary memory: ROM, PROM, EPROM, EEPROM, Flash memory, SRAM, DRAM,
Cache Memory: mapping functions, replacement algorithms, interleaving, hit and rate
penalty, virtual memories, address translation, memory management requirements,
Secondary Storage: Solid State drives (SSD), Magnetic hard disks, Optical disks,
magnetic tape systems.

5 hours

Computer Organization Lab.

CMSM -DSC/Core Course-3, Practical, Credits: 01, Contact hours:30.

(1). Construct an Arithmetic Unit capable of performing 4-bit subtraction and Addition using 2's
complement method. Use Parallel Adders and other necessary logic gates.
(2). Construct a 2-bit logical unit using logic gates capable of performing 2-bit, Bitwise ORing,
ANDing, XORing and inversion
(3). Construct a 4-bit ALU unit which can perform the following operation;

Selection Function
S1 S0
0 0 Addition
0 1 Subtraction
1 0 XOR-ing
1 1 Complement

(4). Construct a 2-bit Carry Look Ahead (CLA) Adder using logic gates.
(5). Study and construct a 1-digit BCD/Decimal adder using parallel adders and other necessary logic
gates.
(6). Construct a Binary Multiplier using basic logic gates.
(7). Subtraction with 1's complement method using parallel adders and logic gates(necessary).

27 | P a g e

(8). Construction of BCD Subtractor with 9'S complement method using parallel adders.
(9). Construction of BCD Subtractor with 10'S complement method using parallel adders.
(10). Binary magnitude comparators (up to 4 bits) using parallel adder and logic gates.
(11). Cascading of 4-bit parallel adder (7483/74283) to construct an 8-bit adder circuit.
(12). Construct a Serial in Serial out 2/4-bit register.
(13). Construct a 2-bit Universal Shift register.
(14). Construct a 2/4-bit ring counter using edge triggered D Flip-Flops.
(15). Construct a 4 - bit Johnson Counter.
(16). Horizontal and Vertical Cascading of Memory modules (7489/74189).
(17). Code converters using memory modules.

Text/Reference Books

1. Computer System Architecture, Morries Mano, Pearson.
2. Computer Organization & Architecture, Williams Stallings, Pearson.
3. Computer Organization, Hamacher, Vranesic and Zaky, McGraw Hill.
4. Computer Architecture and Organization, Govindrajalu, Tata McGraw Hill.
5. Computer Architecture and Organization, J P Hayes, Tata McGraw Hill.
6. Structured Computer Organization, Andrew S. Tanenbaum, Austin, Pearson.

Note: Laboratory work must be conducted using integrated circuits on a breadboard, along with other
necessary devices and equipment.

CMSM - Theory: Mobile Application Development
SEC-3 Course, Theory, Semester – 3, Credits - 02, Contact hours - 30.

Mobile App development using Flutter and Dart

Introduction to Flutter

Introducing Flutter, defining widgets and elements, understanding Widget lifecycle
events, understanding the Widget tree and the element tree, Installing the Flutter SDK,
Android Setup: Install Android Studio, Setup the Android Emulator.

02 hours

Creating Your First Flutter App

Setting Up the Project, using hot reload, using themes to style your App, understanding
Stateless and Stateful Widgets, using external packages.

02 hours

Learning Dart basic

Purpose of DART and its use, Commenting code, Running the main() entry Point,
referencing variables, declaring variables, using Operators, using flow statements,
using functions, Import packages, using classes, Implementing Asynchronous
Programming.

04 hours

Creating Starter Project Template

Creating and Organizing Folders and Files, Structuring Widgets.

02 hours

Widget Tree

Introduction to Widgets, Building the Full Widget Tree, Building a Shallow Widget
Tree

02 hours

28 | P a g e

Using Common Widgets

Using basic widgets, using Images and Icons, using decorators, using the Form Widget
to validate text fields, checking orientation.

02 hours

User Interface (UI) Development

Animation: Animated container, Crossfade, Opacity, controller.
Navigation: Using navigator, Hero Animation, Bottom navigation bar, Bottom app
bar, Tabbar and view.
Scrolling: Card, list view, list tile, Gridview, using Stack.
Layout: High level view of layout, Creating layout.
Interactivity: Set up Gesture detector, Draggable and Dragtarget Widgets, Moving
and Scaling, Dismissible Widget.

08 hours

Finalizing App development

Understanding the JSON Format, Using Database Classes to Write, Read, and Serialize
JSON, Formatting Dates, sorting a list of dates, Retrieving Data with the
FutureBuilder, Building the Journal App, Adding the Journal Database Classes,
Adding the Journal Entry Page, Finishing the Journal Home Page.

Adding Firebase and Firestore Backend

Introduction to Firebase and Cloud Firestore, Structuring and Data Modelling Cloud
Firestore, Viewing Firebase Authentication Capabilities, Viewing Cloud Firestore
Security Rules, Configuring the Firebase Project, adding a Cloud Firestore Database
and Implementing Security, Building the Client Journal App,
Adding Authentication and Cloud Firestore Packages to the Client App, Adding Basic
Layout to the Client App, Adding Classes to the Client App.

08 hours

CMSA- Practical: Mobile App Development
SEC-3, Practical, Semester – 3, Credits - 02, Contact hours - 45.

Here are some practical assignments for mobile app development using Flutter:

1. Basic Flutter Mobile App
 - Create a simple Flutter app with a single screen that displays "Hello, Flutter!".
 - Add a button that changes the text to "Hello, World!" when pressed.

2. Personal Profile MobileApp
 - Develop an app that displays your personal profile, including your name, photo, and a brief bio.
 - Use different Flutter widgets such as `Container`, `Row`, `Column`, and `Text`.

3. Weather MobileApp
 - Develop a weather app that fetches and displays weather information for a given location.
 - Use an API like OpenWeatherMap or any other suitable and display the data using Flutter widgets.

4. Quiz MobileApp
 - Create a quiz app with multiple-choice questions.

29 | P a g e

 - Show the user's score at the end of the quiz.
 - Use `ListView` for displaying questions and options.

5. Photo Gallery Mobile App
 - Develop a photo gallery app that displays images from a user's device.
 - Implement features like viewing images in full screen, deleting, and sharing images.

Optional (App development for practice)

1. Simple Calculator
 - Build a basic calculator app that can perform addition, subtraction, multiplication, and division.
 - Use `TextField` for input and `RaisedButton` for operations.

2. Todo List App
 - Create a todo list app where users can add, edit, and delete tasks.
 - Use a `ListView` to display the list of tasks.

3. Recipe App
 - Create a recipe app that displays a list of recipes.
 - Each recipe should have a detail page with ingredients and instructions.
 - Implement navigation between the list and detail pages.

4. Notes App
 - Build a notes app where users can create, view, edit, and delete notes.
 - Use local storage (e.g., `SharedPreferences` or `sqflite`) to save the notes.

5. Expense Tracker
 - Develop an expense tracker app that allows users to log their expenses.
 - Display a summary of expenses by category and date.
 - Use charts to visualize spending patterns.

6. E-commerce App
 - Develop a simple e-commerce app with a product list and product detail pages.
 - Implement a shopping cart where users can add products and proceed to checkout.

7. Chat App
 - Build a basic chat application with a login screen and a chat screen.
 - Use a backend service like Firebase for real-time messaging.

8. Fitness Tracker
 - Create a fitness tracker app that logs workout activities.
 - Display statistics like total time spent, calories burned, and workout history.

9. Music Player
 - Create a music player app that can play audio files from the device.
 - Implement basic controls like play, pause, next, and previous.

10. Travel Guide App
 - Build a travel guide app that provides information about different travel destinations.
 - Include features like a map view, destination details, and user reviews.

30 | P a g e

Reference books and other resources

1. Flutter Complete Reference by Alberto Miola
2. Beginning Flutter: A Hands-On Guide to App Development by Marco L. Napoli
3. Flutter in Action by Eric Windmill
4. Flutter for Beginners by Thomas Bailey and Alessandro Biessek
5. Pragmatic Flutter by Priyanka Tyagi
6. Online documentations by Google on Flutter: https://docs.flutter.dev/

Semester - IV
Paper Paper type Paper name Credit Contact hours

DSC/CC-5

Theory Computational Mathematics 3 45
Practical Computational Mathematics lab

using C Lab
1 30

DSC/CC-6

Theory Microprocessor and its Applications 3 45
Practical Microprocessor – 8085 Lab 1 30

DSC/CC-7

Theory Operating System 3 45
Practical Operating System Lab 1 30

DSC/CC-8

Theory Object Oriented Programming 3 45
Practical Object Oriented Programming lab 1 30

Semester - 4

CMSM- Theory: Computational Mathematics
DSC/Core Course-5, Theory, Semester – 4, Credits - 03, Contact hours - 45.

Introduction
Set Theory: Finite and Infinite Sets, Uncountable Infinite Sets, Relations: Properties
of Binary Relations, Closure, Partial Ordering Relations, Equivalence, Functions:
definition, one-to-one, onto and invertible, Mathematical Functions: Exponential and
Logarithmic, Counting: Mathematical Induction, Pigeonhole Principle, Permutation
and Combination, Binomial Theorem, Principle of Inclusion and Exclusion.

08 hours

Introduction to Probability
Elementary events, Sample space, Classical and Axiomatic definition of Probability,
Theorems on Total Probability, Conditional Probability, Bernoulli Trials and
Binomial Distribution, Bayes’ Theorem, Random Variables, Expectation, Variance,
Standard Deviation.

08 hours

Growth of Functions
Asymptotic Notations, Standard notations and common functions with simple

04 hours

https://docs.flutter.dev/
https://docs.flutter.dev/

31 | P a g e

examples.

Recurrences
Relations, Generating Functions, Linear Recurrence Relations with Constant
Coefficients and their solution, Substitution Method, Recurrence Trees.

05 hours

Numerical Methods (Algorithmic Approach)
Errors: Approximate and Rounding of Numbers, Significant digits, Errors and their
types, Propagation of errors.
Interpolation: Newton Forward and Backward interpolation, Lagrange interpolation.
Solving a Set of Linear Equations: Gaussian Elimination, Gauss–Jordan, Iteration
methods and their convergence conditions, Gauss-Seidel, Gauss-Jacobi Iterative
Methods.
Solving Non-linear equations: Bisection, Regula-falsi, Secant and Newton-
Raphson, their order of convergence.
Solving Differential Equations: Euler, Runge-Kutta second and fourth order
methods.
Numerical Integration: Trapezoidal and Simpson’s 1/3rd rules.
Curve fitting:
Least square approximation, Linear regression, Polynomial regression, Fitting
Exponential and Trigonometric functions

12 hours

Graph Theory
Basic Terminology, Models and Types, Multi graphs and Weighted graphs, Graph
Representation, Graph Isomorphism, Connectivity, Euler and Hamiltonian Paths and
circuits, Planar Graphs, Trees and their basic terminologies and properties.

08 hours

CMSM - Practical: Computational Mathematics
DSC/Core Course-5, Practical, Semester – 4, Credits - 01, Contact hours - 30.

Laboratory assignments based on Numerical Methods using C.

1. Gauss-Seidel Method: Implement the Gauss-Seidel iterative method to solve a system of
linear equations.

2. Bisection Method: Write a program to find the root of a nonlinear equation using the
bisection method.

3. Newton-Raphson Method: Implement the Newton-Raphson method to find the root of a
given function.

4. Matrix Inversion using Gauss-Jordan Method: Develop a program to find the inverse of a
matrix using the Gauss-Jordan elimination method.

5. Interpolation: Implement Lagrange interpolation to approximate a function from given data
points.

6. Numerical Integration: Write programs for the trapezoidal rule and Simpson’s rules (1/3) to
approximate definite integrals.

7. Solution of Ordinary Differential Equations (ODEs): Implement Euler’s method and
Runge-Kutta methods (second-order and fourth-order) to solve ODEs.

8. Curve Fitting: Fit linear, exponential, and polynomial curves to discrete data using the least
squares method.

9. System of Linear Equations: Solve a system of linear equations using Gauss elimination or
Gauss-Jordan methods.

32 | P a g e

Note: These are only sample programs; more can be included related to the theory.

Text/ Reference Books

1. Elements of Discrete mathematics, C.L. Liu & Mahapatra, Tata McGraw Hill.
2. Discrete Mathematics and Its Applications, Rosen, McGraw Hill.
3. Introduction to algorithms, T.H. Cormen, C.E. Leiserson, R. L. Rivest, Prentice Hall.
4. Discrete Mathematics with Algorithms, Albertson and Hutchinson, John Wiley Publication.
5. Discrete Structures, Logic, and Computability, J. L. Hein, Jones and Bartlett Publishers.
6. Essentials of Discrete Mathematics, D.J. Hunter, Jones and Bartlett Publishers.
7. Numerical Analysis and Computational Procedures by Mollah, New Central Book.
8. Computer Oriented Numerical Methods, 3rd Edition, V Rajaraman, PHI
9. Graph Theory with Applications to Engineering and Computer Science by Narsingh Deo, PHI.
10. Graph Theory by J.A. Bondy and U.S.R. Murty, Springer.
11. Introduction to Graph Theory by D B West, 2nd edition, Pearson Education

CMSM - Theory: Microprocessors
DSC/Core Course-6, Theory, Semester – 4, Credits - 03, Contact hours - 45.

Introduction to Microcomputer based system
Evolution of Microprocessor and Microcontrollers and their advantages and
disadvantages.

02 hours

Microprocessor Architectureand memory interfacing
Microprocessor 8085 pin-out and signals, basic architecture of microprocessor 8085
and explanation of each block, flag registers, general and special purpose registers,
Timing and control unit, need for multiplexing of lower order address and data bus.
Memory Interfacing
Basic concepts in memory interfacing, address decoding (absolute and partial),
memory map, foldback memory, and interfacing of memory segment 8155.

06 hours

Control signal generation and de-multiplexing
Generation of control signals (IOR, IOW, MEMR, MEMW) using basic and
universal logic gates, ALE and use of it for de-multiplexing of lower order address-
data bus (AD0 to AD7).

03 hours

Instruction Set
addressing modes, instruction formats, instruction cycle, instruction timing diagram,
Instruction set: data transfer group, arithmetic and logic group, branch group,
machine control group.

04 hours

Interfacing I/O Devices
Basic interfacing concepts, Peripheral I/O instructions (I/O mapped I/O), IN & OUT
instruction, device selection and data transfer, absolute and partial decoding,
realization of input and output ports, memory mapped I/O techniques, Comparison of
memory mapped I/O and Peripheral mapped I/O.

10 hours

33 | P a g e

Programming 8085
Different programming techniques, Stack and Subroutines, counter and time delays,
code conversion, BCD Arithmetic and 16-bit data operation.

05 hours

Interfacing Peripheral devices and its applications
Concept of Interrupts driven data transfer in microprocessor-8085, software interrupts
using RST instructions, hardware interrupt, vectored interrupts (maskable and non-
maskable), multiple interrupts and priorities.

05 hours

Interfacing of data acquisition devices, PPI, Keyboard and DMA
Digital to Analog Converters (DAC), Analog to Digital converters (ADC), keyboard
interfacing, Programable Peripheral Interface (PPI) 8255 (Mode - 0, BSR),
keyboard/display interface 8279, and DMA controller 8237.

07 hours

Microprocessor 8086
The 8086 microprocessor- Architecture, Instruction set, Addressing modes,
Interrupts, Memory interfacing with 8086.

03 hours

CMSM - Practical: Programming Microprocessor 8085
DSC/Core Course-6, Practical, Semester – 4, Credits - 01, Contact hours - 30.

1. Assembly Language Programming for Arithmetic Operations like Addition, Subtraction,
2. Multiplication and Division on 8, 16-bit data.
3. Assembly Language Programming for different logical operations.
4. Assembly Language Programming for code conversions.
5. Assembly Language Programming for different sorting techniques.
6. Assembly Language Programming for memory block transfer.
7. Assembly Language Programming for AP series and Fibonacci series.
8. Assembly Language Programming for Searching.
9. Assembly Language Programming to determine the frequency distribution of elements in an

Array.
10. Assembly Language Programming for block replacement and data transfer of array elements

to another memory block.

Note: The above-mentioned are only samples many more programs related to Microprocessor 8085
programming techniques can be included.

CMSM - Theory: Operating System.
DSC/Core Course-7, Theory, Semester – 4, Credits - 03, Contact hours - 45.

Introduction
Basic OS functions, types of operating systems- batch processing,
multiprogramming, time sharing, multiprocessing, distributed and real time systems.

02 hours

Operating System Organization
Processor and user modes, kernels, system calls and system programs.

05 hours

34 | P a g e

Process
System view of the process and resources, process control block, I/O and CPU bound
process, process hierarchy, concept of threads
Process Scheduling: Pre-emptive and non-pre-emptive scheduling, long term
scheduling, short term/CPU scheduling (FCFS, SJF, SRJF, RR and priority) and
medium-term scheduling
Process Synchronization: Concurrent processes, critical section, semaphores and
application, methods for inter-process communication;

12 hours

Deadlock
Definition, Prevention, Avoidance, Detection, Recovery.

07 hours

Memory Management
Physical and logical address space; memory allocation strategies – fixed and variable
partitions, paging, segmentation, virtual memory.

12 hours

File and I/O Management
Directory structure, file operations, file allocation methods, disk management.

05 hours

Protection and Security
Policy mechanism, Authentication

02 hours

CMSM - Practical: Operating System
DSC/Core Course-7, Practical, Semester – 4, Credits - 01, Contact hours - 30.

1. Write a shell script to convert the content of a file from lower case to upper case.
2. Write a shell script to count the words, lines and characters of a given file. File name should be

provided at run time.
3. Write a shell script that take a word from user and find out the frequency of the word in a given

file.
4. Write a shell script that gets executed at the moment of user login and it displays Good Morning,

Good afternoon, Good Evening, Good Night, depending upon the time at which the user logs on.
5. Write a shell script to print Pascal diamond.
6. Write a shell script to find a number using sequential search method.
7. Write a shell script to find a number using binary search technique.
8. Write a shell script to sort a set of integer numbers using bubble sort.
9. Write a shell script to find out the factorial of a given number.
10. Write a shell script to reverse a string and check whether it is a palindrome.
11. Write a shell script to find the roots of a quadratic equation ax2 + bx +c = 0, considering all

possible cases.
12. Write a shell script for menu-based system to insert records for employees with employee ID,

name, designation, salary in a data file, also display records when necessary. Display salary for the
employee asked.

Note:These are just examples; additional ones can be added based on the syllabus.

Text/ Reference Books

1. Operating Systems Concepts, A Silberschatz, P.B. Galvin, G. Gagne, WileyPublications.
2. Modern Operating Systems, A.S. Tanenbaum, 3rd Edition, Pearson Education.

35 | P a g e

3. Operating Systems: A Modern Perspective, G. Nutt, Pearson Education.
4. Operating Systems, Internals & Design Principles, Stallings, PHI.
5. Operating Systems- Concepts and design, M. Milenkovic, Tata McGraw Hill.
6. Sumitabha Das, UNIX Concepts and Applications, Tata McGraw-Hill.
7. Understanding the Linux Kernel, D. P. Bovet and M. Cesati, O'Reilly.

CMSM - Theory: Object Oriented Programming (OOP’s)
DSC/Core Course-8, Theory, Semester – 4, Credits - 03, Contact hours - 45.

Concept of OOPs
Difference with procedure-oriented programming, Data abstraction and information
hiding: Objects, Classes, methods.

02 hours

Introduction to Java
Java Architecture and features, understanding the semantic and syntax differences
between C++ and Java, Compiling and executing a Java Program, variables,
constants, keywords data types, Operators (Arithmetic, Logical and Bitwise) and
expressions, comments, doing basic program output, decision making constructs
(conditional statements and loops) and nesting, Java methods (defining, scope,
passing and returning arguments, type conversion and type and checking, built-in
Java class methods).

04 hours

Arrays, Strings and I/O
Creating & using arrays (One dimension and multi-dimensional), referencing arrays
dynamically, Java Strings: The Java String class, creating & using string objects,
manipulating strings, string immutability & equality, passing strings to & from
methods, string buffer classes. Simple I/O using System.out and the scanner class,
byte and character streams, Reading/Writing from console and files.

06 hours

Object-Oriented Programming Overview
Principles of Object-Oriented Programming, defining & using classes, controlling
access to class members, class constructors, method overloading, Class variables &
methods, Objects as parameters, final classes, Object class, garbage collection.

04 hours

Inheritance, Interfaces, Packages, Enumerations, Autoboxing and Metadata.
Single Level and Multilevel, Method Overriding, Dynamic Method Dispatch,
Abstract Classes, Interfaces and Packages, extending interfaces and packages,
Package and Class Visibility, Using Standard Java Packages (util, lang, io, net),
Wrapper Classes, Autoboxing/Unboxing, Enumerations and Metadata.

10 hours

Exception Handling, Threading, Networking and Database Connectivity
Exception types, uncaught exceptions, throw, built-in exceptions, creating your own
exceptions; Multi-threading: The Thread class and Runnable interface, creating single
and multiple threads, Thread prioritization, synchronization and communication,
suspending/resuming threads. Using java.net package, Overview of TCP/IP and
Datagram programming. Accessing and manipulating databases using JDBC.

09 hours

Applets
Java Applets: Introduction to Applets, Writing Java Applets, Working with Graphics,
Incorporating Images & Sounds. Event Handling Mechanisms, Listener Interfaces,
Adapter and Inner Classes. The design and Implementation of GUIs using the AWT
controls, Swing components of Java Foundation Classes such as labels, buttons,
textfields, layout managers, menus, events and listeners; Graphic objects for drawing

10 hours

36 | P a g e

figures such as lines, rectangles, ovals, using different fonts. Overview of servlets.

CMSM - Practical: Object Oriented Programming
DSC/Core Course-7, Practical, Semester – 4, Credits - 01, Contact hours - 30.

OOPs Lab using JAVA

Text/Reference Books

1. Java: The Complete Reference, Herbert Schildt, McGraw-Hill Education.
2. The Java Language Specification, Java SE by James Gosling, Bill Joy, Guy L Steele
Jr, Gilad Bracha, Alex Buckley, Published by Addison Wesley.
3. Effective Java by Joshua Bloch, Publisher: Addison-Wesley.
4. Core Java 2 by Cay S. Horstmann, Gary Cornell, Volume 1, Prentice Hall.
5. Programming with Java by E. Balagurusamy, McGraw Hill.
6. Java: How to Program by Paul Deitel, Harvey Deitel, Prentice Hall.
7. Programming with JAVA by John R. Hubbard, Schaum's Series.

	CSR-82-2024
	Computer Science Semester 1,2,3,4 modified final

